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I. Proof of Proposition 1 (The Optimal Pricing Strategy)

Based on (8), we obtain the following optimality conditions
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From (S1) we have p = (N +c—z— )\) / 2, which when substituted into (S2) and (S3) gives two differ-

ential equations in terms of  and \:
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The two eigenvalues of A are r, = —(\/2@5 + 6% — 5) /2and 1, = (\/2@5 + &6 + 6) / 2. Define two new

variables u(t) and v(¢) as linear combinations of z(t) and A(?):
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Note that each column in H is an eigenvector of A . Then, we can transform (S4) into a diagonal system

consisting of single-endogenous-variable differential equations:
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where A is the 2 x 2 diagonal matrix whose diagonal elements are the two eigenvalues of A . It is straight-
forward to obtain the following general solution for the transformed system in (S6):
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where k; and k, are arbitrary constants to be determined. Substituting in (S5), we convert the solution

back into the original variables z(t) and A(#). That is,
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The boundary conditions z(0) = 0 and lim e *A()z(t) = 0 imply k, = [‘E(Air;c))
t—00 —latzn

and k, = 0. Substituting

in (S8), it follows that a:F(t) =(N —¢)(1 —e ) and AF (t) =—(N - c)(l -2y / oz)e’”7 where v = —r; .

Substituting in (S1) yields the optimal price path p’ (t).

I1. Proof of Proposition 4 (Myopic Equilibrium)

Plugging (21) into (22) yields 7 (w) = (w — c)a(N - (N +w— x) /2 - .I’) . The first order condition of
77%(11}) implies @ = (N +c— x) /2, which after substituting into (6) yields & = (a/4)(N —c¢ —x) .
Solving the differential equation with z(0) = 0 yields (24). The result in (23) follows immediately after

plugging (24) into @ above and then into (21).

II1. Proof of Proposition 5 (Benefit from Myopic Pricing)
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(12) and (25), the condition v = 46 can be derived by equating 7777]‘;[ + 7T£M to m', and then solving for o .

IV. Proof of Proposition 6 (Strategic Decentralization)
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- . and then solving for « result in a = ¢, which concludes 71% + Wy >aMif o> 6.



Online Appendix iii

V. Proof of Proposition 7 (Disintermediation Conditions)

When the forward-looking manufacturer sells directly to customers, it acts as a monopolist; thus according

o (12), its net discounted profit with « _ , is given by
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On the other hand, when selling through a forward-looking retailer with the trial «, , based on Table 1(a)

the forward-looking manufacturer will obtain the following profit
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By equating (S9) and (S10) and then solving for «,, we obtain 08,?7 P = & . Similarly,
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we can obtain the other thresholds in the case of open-loop equilibrium:
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In the same vain, with (12) and Table 1(b), the following thresholds in the case of feedback equilibrium can
be derived:
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The difference between the left hand side and the right hand side of (S11), after squaring the items on both
sides, is 66* + a6(36 + 4a)(46 + a) — 662 (a + 6)\/20«5 + 62, which is positive. The rest of the results

can be verified with the same approach.
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VI. Optimality Conditions for the Numerical Study in Section 7.3

(i) The Optimal Pricing

The problem is to maximize (7) subject to (26), (27), (29), and (30). Accordingly, the current-value La-
grangian is given by L(p,z,7, A\, A\, u,t) = (p(t) — c(t))@(t) + N (£)Z(t) + A\ (t)r(t) + u(K — i(t)) , where A (t)
and A, (t) are the shadow prices associated with z and r, respectively, and the scalar « > 0 is the La-

grange multiplier. The optimal pricing can be obtained by solving the following optimality conditions:
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(ii) Myopic Pricing in the Decentralized Supply Chain

When the manufacturer and the retailer are myopic, they maximize their respective current-term profits

m,, = (w(t) — c(t))i(t) and 7, = (p(t) — w(t))i(t), subject to (26), (27), (29), and (30).

m

Given the wholesale price w , the best price reaction for the retailer is
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which, after plugging into (29) and (30), yields the following sales rate and reference price rate:

#(t) = (o + Bz / N)(N —z+Qr — (1+Quw)/2, (S19)
v [Nz -2+ w
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Subject to (S19), (S20), and (27), the Lagrangian for the manufacturer’s optimization problem is given by
L(w, z,u,t) = (w(t) — c(t))i(t) + u(K — &(t)) , where the scalar u > 0 is the Lagrange multiplier. According-
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ly, the myopic equilibrium pricing corresponds to the solution of the following optimality conditions:
om, _ SN+l v (S21)
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VII. Computational Result of the Numerical Study in Section 7

Cost Learning Effect: Absent (A=0) Fair (A=0.05) High (A=0.10)
Reference Price Effect Reference Price Effect Reference Price Effect
Absent Fair High Absent Fair High Absent Fair High
Imitation Discount Q=0) Q=029 (Q=0.50) (Q=0) (Q=0.29) (Q=0.50) Q=0)  (Q=0.29) (Q=0.50)
Effect Rate No Capacity Constraint (K=« )
Low (5=0.05) 98.17% | 99.66%  99.97% 96.52% 98.83% 99.76% 96.90% 98.82% 99.73%
Absent (3=0)  Fair (8=0.10) 93.29% | 96.27%  98.03% 90.03% 93.67% 95.93% 90.42% 94.06% 96.15%
High (5=0.15) 89.81% | 93.05% 95.15% 85.93% 89.63% 92.05% 86.00% 89.83%  92.20%
Low (3=0.05) 98.44% 99.81%  99.96% 96.85% 98.96%  99.74% 97.06% 98.12%  99.38%
Fair (3=0) Fair (3=0.10) 93.07% 96.25%  98.04% 89.61% 93.48% 95.78% 90.09% 93.86%  96.11%
High (5=0.15) 89.08% 92.61% 94.86% 84.67% 88.73% 91.29% 84.94% 88.96% 91.61%
Low (5=0.05) 98.71% 99.83%  99.84% 97.15% 98.99%  99.58% 97.44%  99.10%  99.58%
High (B=0) Fair (5=0.10) 93.30% 96.49%  98.27% 89.73% 93.59%  95.88% 90.24%  94.02%  96.23%
High (5=0.15) 88.81% 92.53%  95.04% 84.15% 88.29%  90.99% 84.46% 88.64%  91.36%
Fair Capacity Constraint (K=4)
Low (5=0.05) 98.14%  99.69%  99.98% 96.53% 98.82%  99.76% 96.73% 98.82%  99.73%
Absent (g=0)  Fair (8=0.10) 93.21% 96.35% 98.06% 90.08% 93.73%  95.95% 90.41% 93.93%  96.22%
High (5=0.15) 89.69% 93.22%  95.31% 85.98% 88.69% 92.10% 86.66% 89.81%  92.26%
Low (5=0.05) 98.47% 99.82%  99.96% 97.15% 98.96%  99.74% 97.20% 99.09%  99.72%
Fair (8=0) Fair (6=0.10) 93.16% 96.32% 98.06% 89.66% 9345% 95.77% 89.96% 93.86%  96.08%
High (5=0.15) 89.21% 91.93%  94.89% 84.78% 88.67%  90.20% 84.87% 88.77%  91.69%
Low (5=0.05) 98.71% 99.83% 99.81% 97.15%  99.01%  99.62% 97.28% 99.10%  99.59%
High (8=0) Fair (5=0.10) 93.31% 96.49% 98.19% 89.72% 93.38% 95.78% 90.17% 93.89%  96.46%
High (5=0.15) 88.96% 92.60% 94.78% 84.19% 88.53%  92.04% 84.37% 89.30%  93.12%
High Capacity Constraint (K=3)
Low (5=0.05) 98.19% 99.68%  99.96% 96.53% 98.82%  99.76% 96.73% 98.95%  99.77%
Absent (3=0)  Fair (5=0.10) 93.33% 96.34% 98.05% 89.78% 93.67% 96.07% 90.36% 94.24%  96.76%
High (3=0.15) 83.67% 92.62% 94.80% 86.06% 90.48%  93.72% 86.77% 91.34%  94.88%
Low (5=0.05) 98.48% 99.81%  99.95% 96.86% 98.96% 99.56% 96.86% 98.90%  99.93%
Fair (3=0) Fair (5=0.10) 9153% 96.28% 97.75% 90.05% 94.58% 97.76% 91.04% 95.61% 98.83%
High (5=0.15) 88.77% 92.50%  95.04% 86.40% 91.98% 96.37% 87.63% 93.44%  97.85%
Low (5=0.05) 98.71% 99.83% 99.81% 96.98% 99.23%  99.89% 97.28% 99.46%  99.84%
High (3=0.2) Fair (3=0.10) 92.73% 96.14%  98.14% 91.77% 97.03%  98.82% 93.05% 97.73%  99.12%
High (6=0.15) 88.79% 93.28% 96.37% 88.48% 95.09% 97.95% 90.20% 91.20%  98.43%

Note that the shaded area in the upper left corner of the table corresponds to the analytical results in Sec-

tion 5, where all additional effects are absent.



