Electronic Companion to "Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution"

Wei-yu Kevin Chiang
College of Business, City University of Hong Kong
wchiang@cityu.edu.hk

I. Proof of Proposition 1 (The Optimal Pricing Strategy)

Based on (8), we obtain the following optimality conditions

$$
\begin{align*}
& \frac{\partial H(x, p)}{\partial p}=\alpha(N-2 p-x+c)-\alpha \lambda=0 \tag{S1}\\
& \dot{\lambda}(t)=\delta \lambda-\frac{\partial H(x, p)}{\partial x}=\lambda(\alpha+\delta)+\alpha(p-c) \tag{S2}\\
& \dot{x}(t)=\alpha(N-p-x) \tag{S3}
\end{align*}
$$

From (S1) we have $p=(N+c-x-\lambda) / 2$, which when substituted into (S2) and (S3) gives two differential equations in terms of x and λ :

$$
\left[\begin{array}{c}
\dot{x}(t) \tag{S4}\\
\dot{\lambda}(t)
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
x(t) \\
\lambda(t)
\end{array}\right]+\mathbf{b}, \text { where } \mathbf{A}=\frac{a}{2}\left[\begin{array}{cc}
-1 & 1 \\
-1 & \frac{\alpha+2 \delta}{\alpha}
\end{array}\right] \text { and } \mathbf{b}=\frac{a(N-c)}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

The two eigenvalues of \mathbf{A} are $r_{1}=-\left(\sqrt{2 \alpha \delta+\delta^{2}}-\delta\right) / 2$ and $r_{2}=\left(\sqrt{2 \alpha \delta+\delta^{2}}+\delta\right) / 2$. Define two new variables $u(t)$ and $v(t)$ as linear combinations of $x(t)$ and $\lambda(t)$:

$$
\left[\begin{array}{l}
u(t) \tag{S5}\\
v(t)
\end{array}\right]=\mathbf{H}^{-1}\left[\begin{array}{c}
x(t) \\
\lambda(t)
\end{array}\right], \text { where } \mathbf{H}=\left[\begin{array}{cc}
\frac{\alpha+2 r_{2}}{\alpha} & \frac{\alpha+2 r_{1}}{\alpha} \\
1 & 1
\end{array}\right] .
$$

Note that each column in \mathbf{H} is an eigenvector of \mathbf{A}. Then, we can transform (S4) into a diagonal system consisting of single-endogenous-variable differential equations:

$$
\left[\begin{array}{c}
\dot{u}(t) \tag{S6}\\
\dot{v}(t)
\end{array}\right]=\mathbf{H}^{-1}\left[\begin{array}{c}
\dot{x}(t) \\
\dot{\lambda}(t)
\end{array}\right]=\mathbf{H}^{-1} \mathbf{A}\left[\begin{array}{c}
x(t) \\
\lambda(t)
\end{array}\right]+\mathbf{H}^{-1} \mathbf{b}=\mathbf{H}^{-1} \mathbf{H} \mathbf{\Lambda} \mathbf{H}^{-1}\left[\begin{array}{c}
x(t) \\
\lambda(t)
\end{array}\right]+\mathbf{H}^{-1} \mathbf{b}=\boldsymbol{\Lambda}\left[\begin{array}{c}
u(t) \\
v(t)
\end{array}\right]+\mathbf{H}^{-1} \mathbf{b},
$$

where Λ is the 2×2 diagonal matrix whose diagonal elements are the two eigenvalues of \mathbf{A}. It is straightforward to obtain the following general solution for the transformed system in (S6):

$$
\left[\begin{array}{l}
u(t) \tag{S7}\\
v(t)
\end{array}\right]=\left[\begin{array}{cc}
e^{r_{1} t} & 0 \\
0 & e^{r_{2} t}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]-\Lambda^{-1} \mathbf{H}^{-1} \mathbf{b}
$$

where k_{1} and k_{2} are arbitrary constants to be determined. Substituting in (S5), we convert the solution back into the original variables $x(t)$ and $\lambda(t)$. That is,

$$
\begin{align*}
{\left[\begin{array}{l}
x(t) \\
\lambda(t)
\end{array}\right] } & =\mathbf{H}\left[\begin{array}{l}
u(t) \\
v(t)
\end{array}\right]=\mathbf{H}\left[\begin{array}{cc}
e^{r_{1} t} & 0 \\
0 & e^{r_{2} t}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]-\mathbf{H} \mathbf{\Lambda}^{-1} \mathbf{H}^{-1} \mathbf{b}=\mathbf{H}\left[\begin{array}{cc}
e^{r_{1} t} & 0 \\
0 & e^{r_{2} t}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]-\mathbf{A}^{-1} \mathbf{b} \\
& =\left[\begin{array}{cc}
\frac{\alpha+2 r_{2}}{\alpha} & \frac{\alpha+2 r_{1}}{\alpha} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{r_{1} t} & 0 \\
0 & e^{r_{2} t}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]-\left[\begin{array}{cc}
-\frac{2 \delta+\alpha}{\alpha \delta} & \frac{1}{\delta} \\
-\frac{1}{\delta} & \frac{1}{\delta}
\end{array}\right]\left[\begin{array}{l}
\frac{\alpha(N-c)}{2} \\
\frac{\alpha(N-c)}{2}
\end{array}\right] \tag{S8}\\
& =\left[\begin{array}{cc}
\frac{\alpha+2 r_{2}}{\alpha} e^{t r_{1}} & \frac{\alpha+2 r_{1}}{\alpha} e^{t r_{2}} \\
e^{t r_{1}} & e^{t r_{2}}
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]+\left[\begin{array}{c}
N-c \\
0
\end{array}\right] .
\end{align*}
$$

The boundary conditions $x(0)=0$ and $\lim _{t \rightarrow \infty} e^{-\delta t} \lambda(t) x(t)=0$ imply $k_{1}=\frac{\alpha(N-c)}{-\left(\alpha+2 r_{2}\right)}$ and $k_{2}=0$. Substituting in (S8), it follows that $x^{F}(t)=(N-c)\left(1-e^{-\gamma t}\right)$ and $\lambda^{F}(t)=-(N-c)(1-2 \gamma / \alpha) e^{-\gamma t}$, where $\gamma=-r_{1}$. Substituting in (S1) yields the optimal price path $p^{F}(t)$.

II. Proof of Proposition 4 (Myopic Equilibrium)

Plugging (21) into (22) yields $\pi_{m}^{M}(w)=(w-c) \alpha(N-(N+w-x) / 2-x)$. The first order condition of $\pi_{m}^{M}(w)$ implies $\tilde{w}^{M}=(N+c-x) / 2$, which after substituting into (6) yields $\dot{x}=(\alpha / 4)(N-c-x)$. Solving the differential equation with $x(0)=0$ yields (24). The result in (23) follows immediately after plugging (24) into \tilde{w}^{M} above and then into (21).

III. Proof of Proposition 5 (Benefit from Myopic Pricing)

With (20) and (25), it can be verified that $\pi_{m}^{O L}-\pi_{m}^{M}=\left(\frac{\alpha+\delta-\sqrt{2 \alpha \delta+\delta^{2}}}{4 \alpha}-\frac{\alpha}{4(\alpha+2 \delta)}\right)(N-c)=$

$$
\frac{3 \alpha \delta+2 \delta^{2}-(\alpha+2 \delta) \sqrt{\delta(\delta+2 \alpha)}}{4 \alpha(\alpha+2 \delta)}(N-c)=\frac{-2 \alpha^{3} \delta(N-c)}{4 \alpha(\alpha+2 \delta)\left(3 \alpha \delta+2 \delta^{2}+(\alpha+2 \delta) \sqrt{\delta(\delta+2 \alpha)}\right)}<0 . \text { Similar- }
$$

ly, we can verify $\pi_{r}^{O L}-\pi_{r}^{M}<0, \pi_{m}^{F B}-\pi_{m}^{M}<0$, and $\pi_{r}^{F B}-\pi_{r}^{M}<0$. The result then follows. With (12) and (25), the condition $\alpha=4 \delta$ can be derived by equating $\pi_{m}^{M}+\pi_{r}^{M}$ to π^{F}, and then solving for α.

IV. Proof of Proposition 6 (Strategic Decentralization)

From (25) we have $\pi_{m}^{M}+\pi_{r}^{M}=\frac{3 \alpha(N-c)^{2}}{8(\alpha+2 \delta)}$, and from (13) we know $\pi^{\mathrm{M}}=\frac{\alpha(N-c)^{2}}{4(\alpha+\delta)}$. Equating π^{M} to $\pi_{m}^{M}+\pi_{r}^{M}$ and then solving for α result in $\alpha=\delta$, which concludes $\pi_{m}^{M}+\pi_{r}^{M}>\pi^{M}$ if $\alpha>\delta$.

V. Proof of Proposition 7 (Disintermediation Conditions)

When the forward-looking manufacturer sells directly to customers, it acts as a monopolist; thus according to (12), its net discounted profit with α_{m}, is given by

$$
\begin{equation*}
\left(\alpha_{m}+\delta-\sqrt{2 \alpha_{m} \delta+\delta^{2}}\right)(N-c)^{2} /\left(2 \alpha_{m}\right) \tag{S9}
\end{equation*}
$$

On the other hand, when selling through a forward-looking retailer with the trial α_{r}, based on Table 1(a) the forward-looking manufacturer will obtain the following profit

$$
\begin{equation*}
\left(\alpha_{r}+\delta-\sqrt{2 \alpha_{r} \delta+\delta^{2}}\right)(N-c) /\left(4 \alpha_{r}\right) . \tag{S10}
\end{equation*}
$$

By equating (S9) and (S10) and then solving for α_{m} we obtain $\theta_{(F, F)}^{O L}=\frac{4 \alpha_{r} \delta}{5 \delta+\alpha_{r}+3 \sqrt{2 \alpha_{r} \delta+\delta^{2}}}$. Similarly, we can obtain the other thresholds in the case of open-loop equilibrium:

$$
\theta_{(M, F)}^{O L}=\frac{2 \alpha_{r} \delta^{2}}{2 \delta^{2}+\left(2 \delta+\alpha_{r}\right) \sqrt{\alpha_{r} \delta+\delta^{2}}} \text { and } \theta_{(F, M)}^{O L}=\theta_{(M, M)}=\alpha_{r} / 2
$$

In the same vain, with (12) and Table 1(b), the following thresholds in the case of feedback equilibrium can be derived:
$\theta_{(F, F)}^{F B}=4 \delta \alpha_{r} \frac{3 \alpha_{r}+52 \delta-10 \sqrt{6 \delta \alpha_{r}+4 \delta^{2}}}{\left(16 \delta-\alpha_{r}\right)^{2}}, \theta_{(M, F)}^{F B}=4 \delta \frac{6\left(\alpha_{r}+\delta\right) \sqrt{4 \delta^{2}+2 \delta \alpha_{r}}-\left(12 \delta^{2}+3 \delta \alpha_{r}-2 \alpha_{r}{ }^{2}\right)}{96 \delta^{2}+45 \delta \alpha_{r}-2 \alpha_{r}{ }^{2}}$,
and $\theta_{(F, M)}^{F B}=\frac{6 \delta \alpha_{r}\left(\alpha_{r}+\delta\right)\left(2 \delta^{2}+3 \delta \alpha_{r}-2 \sqrt{\delta\left(\alpha_{r}+\delta\right)}\left(\alpha_{r}+\delta\right)\right)}{2 \delta\left(\alpha_{r}+\delta\right)\left(2 \delta-\alpha_{r}\right)\left(3 \alpha_{r}+2 \delta\right)-\sqrt{\delta\left(\alpha_{r}+\delta\right)}\left(\alpha_{r}+2 \delta\right)^{3}}$.
The result $\theta_{(F, F)}^{O L}<\alpha_{r} / 2$ can be verified by showing $\frac{\partial \theta_{(F, F)}^{O L}}{\partial \delta}=\frac{4 \alpha^{2}\left(\sqrt{\delta^{2}+2 \alpha \delta}+3 \delta\right)}{\left(\alpha+5 \delta+3 \sqrt{\delta^{2}+2 \alpha \delta}\right)^{2} \sqrt{\delta^{2}+2 \alpha \delta}}>0$
and $\lim _{\delta \rightarrow \infty} \theta_{(F, F)}^{O L}=\lim _{\delta \rightarrow \infty} \frac{4 \alpha_{r}}{5+\alpha_{r} / \delta+3 \sqrt{2 \alpha_{r} / \delta+1}}=\frac{\alpha_{r}}{2}$. To verify $\theta_{(F, F)}^{O L}>\theta_{(M, F)}^{O L}$, since
$\theta_{(F, F)}^{O L}-\theta_{(M, F)}^{O L}=\frac{2 \alpha \delta\left(2(2 \delta+\alpha) \sqrt{\alpha \delta+\delta^{2}}-\delta^{2}-\alpha \delta-3 \delta \sqrt{2 \alpha \delta+\delta^{2}}\right)}{\left(\alpha+5 \delta+3 \sqrt{2 \alpha \delta+\delta^{2}}\right)\left(2 \delta^{2}+(2 \delta+\alpha) \sqrt{\alpha \delta+\delta^{2}}\right)}$, it suffices to show

$$
\begin{equation*}
2(2 \delta+\alpha) \sqrt{\alpha \delta+\delta^{2}}>\delta^{2}+\alpha \delta+3 \delta \sqrt{2 \alpha \delta+\delta^{2}} \tag{S11}
\end{equation*}
$$

The difference between the left hand side and the right hand side of (S11), after squaring the items on both sides, is $6 \delta^{4}+\alpha \delta(3 \delta+4 \alpha)(4 \delta+\alpha)-6 \delta^{2}(\alpha+\delta) \sqrt{2 \alpha \delta+\delta^{2}}$, which is positive. The rest of the results can be verified with the same approach.

VI. Optimality Conditions for the Numerical Study in Section 7.3

(i) The Optimal Pricing

The problem is to maximize (7) subject to (26), (27), (29), and (30). Accordingly, the current-value Lagrangian is given by $L\left(p, x, r, \lambda_{1}, \lambda_{2}, u, t\right)=(p(t)-c(t)) \dot{x}(t)+\lambda_{1}(t) \dot{x}(t)+\lambda_{2}(t) \dot{r}(t)+u(K-\dot{x}(t))$, where $\lambda_{1}(t)$ and $\lambda_{2}(t)$ are the shadow prices associated with x and r, respectively, and the scalar $u>0$ is the Lagrange multiplier. The optimal pricing can be obtained by solving the following optimality conditions:

$$
\begin{gather*}
\frac{\partial L}{\partial p}=0 \Rightarrow p=\frac{N-x+\Omega r}{2(1+\Omega)}-\frac{\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)}{2}+\frac{\lambda_{2} \kappa}{2(1+\Omega)(\alpha+\beta x / N)}, \tag{S12}\\
\dot{x}(t)=(\alpha+\beta x / N)\left(N-x+\Omega r+(1+\Omega)\left(\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right)\right) / 2-\lambda_{2} \kappa / 2, \tag{S13}\\
\dot{r}(t)=\frac{\kappa}{2}\left(\frac{N-x-(2+\Omega) r}{(1+\Omega)}-\lambda_{1}+u+\left(c_{0}+c_{1} e^{-\Lambda x}\right)+\frac{\lambda_{2} \kappa}{(1+\Omega)(\alpha+\beta x / N)}\right), \tag{S14}\\
\dot{\lambda}_{1}=\delta \lambda_{1}+\lambda_{2} \kappa \Lambda c_{1} e^{-\Lambda x}-\frac{1}{2}\left(N-x+\Omega r+(1+\Omega)\left(\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right)+\frac{\lambda_{2} \kappa}{\alpha+\beta x / N}\right)\left(\beta \frac{N-x+\Omega r}{2 N(1+\Omega)}\right. \\
\left.+\beta \frac{\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)}{2 N}-\frac{\beta \lambda_{2} \kappa}{2 N(1+\Omega)(\alpha+\beta x / N)}-\frac{\alpha+\beta x / N}{1+\Omega}+\Lambda c_{1} e^{-\Lambda x}(\alpha+\beta x / N)\right), \tag{S15}\\
\dot{\lambda}_{2}=(\delta+\kappa) \lambda_{2}-\frac{(\alpha+\beta x / N) \Omega}{2}\left(\frac{N-x+\Omega r}{1+\Omega}+\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)+\frac{\lambda_{2} \kappa}{(1+\Omega)(\alpha+\beta x / N)}\right), \tag{S16}\\
u\left(K-(\alpha+\beta x / N)\left(N-x+\Omega r+(1+\Omega)\left(\lambda_{1}-u-\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right)\right) / 2+\lambda_{2} \kappa / 2\right)=0 . \tag{S17}
\end{gather*}
$$

(ii) Myopic Pricing in the Decentralized Supply Chain

When the manufacturer and the retailer are myopic, they maximize their respective current-term profits

$$
\pi_{m}=(w(t)-c(t)) \dot{x}(t) \text { and } \pi_{r}=(p(t)-w(t)) \dot{x}(t), \text { subject to }(26),(27),(29), \text { and }(30)
$$

Given the wholesale price w, the best price reaction for the retailer is

$$
\begin{equation*}
\frac{\partial \pi_{r}}{\partial p}=0 \Rightarrow p=\frac{N-x+\Omega r}{2(1+\Omega)}+\frac{w}{2}, \tag{S18}
\end{equation*}
$$

which, after plugging into (29) and (30), yields the following sales rate and reference price rate:

$$
\begin{gather*}
\dot{x}(t)=(\alpha+\beta x / N)(N-x+\Omega r-(1+\Omega) w) / 2 \tag{S19}\\
\dot{r}(t)=\kappa\left(\frac{N-x-(2+\Omega) r}{2(1+\Omega)}+\frac{w}{2}\right) \tag{S20}
\end{gather*}
$$

Subject to (S19), (S20), and (27), the Lagrangian for the manufacturer's optimization problem is given by $L(w, x, u, t)=(w(t)-c(t)) \dot{x}(t)+u(K-\dot{x}(t))$, where the scalar $u>0$ is the Lagrange multiplier. According-
ly, the myopic equilibrium pricing corresponds to the solution of the following optimality conditions:

$$
\begin{gather*}
\frac{\partial \pi_{r}}{\partial p}=0 \Rightarrow p=\frac{N-x+\Omega r}{2(1+\Omega)}+\frac{w}{2} \tag{S21}\\
\dot{x}(t)=(\alpha+\beta x / N)\left(N-x+\Omega r-(1+\Omega) u-(1+\Omega)\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right) / 4, \tag{S22}\\
\dot{r}(t)=\frac{\kappa}{4(1+\Omega)}\left(3(N-x)-(4+\Omega) r+(1+\Omega)\left(u+\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right)\right), \tag{S23}\\
u\left(K-(\alpha+\beta x / N)\left(N-x+\Omega r-(1+\Omega) u-(1+\Omega)\left(c_{0}+c_{1} e^{-\Lambda x}\right)\right) / 4\right)=0 . \tag{S24}
\end{gather*}
$$

VII. Computational Result of the Numerical Study in Section 7

Cost Learning Effect:		Absent ($\Lambda=0$)			Fair ($\Lambda=0.05$)			High ($\Lambda=0.10$)		
Imitation Effect	Discount Rate	Reference Price Effect			Reference Price Effect			Reference Price Effect		
		$\begin{gathered} \text { Absent } \\ (\mathrm{S}=\mathrm{U}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Fair } \\ (\mathrm{S}==0.25) \end{gathered}$	$\begin{gathered} \text { High } \\ (\Omega=U .5 \cup) \end{gathered}$	$\begin{gathered} \hline \text { Absent } \\ (\mathrm{S}=\mathrm{U}) \end{gathered}$	$\begin{gathered} \hline \text { Fair } \\ (\mathrm{s}=0.2 \zeta) \end{gathered}$	$\begin{gathered} \text { High } \\ ((\Omega=U .5 \cup) \end{gathered}$	Absent ($\mathrm{S}=\mathrm{=}$)	$\begin{gathered} \text { Fair } \\ (\mathrm{s}=0.25) \end{gathered}$	$\begin{gathered} \text { High } \\ (S 2=U .5 \cup) \end{gathered}$
		No Capacity Constraint (K=)								
Absent ($\beta=0$)	Low ($\delta=0.05$)	98.17\%	99.66\%	99.97\%	96.52\%	98.83\%	99.76\%	96.90\%	98.82\%	99.73\%
) Fair ($\delta=0.10$)	93.29\%	96.27\%	98.03\%	90.03\%	93.67\%	95.93\%	90.42\%	94.06\%	96.15\%
	High ($\delta=0.15$)	89.81\%	93.05\%	95.15\%	85.93\%	89.63\%	92.05\%	86.00\%	89.83\%	92.20\%
Fair ($\beta=0$)	Low ($\delta=0.05$)	98.44\%	99.81\%	99.96\%	96.85\%	98.96\%	99.74\%	97.06\%	98.12\%	99.38\%
	Fair ($\delta=0.10$)	93.07\%	96.25\%	98.04\%	89.61\%	93.48\%	95.78\%	90.09\%	93.86\%	96.11\%
	High ($\delta=0.15$)	89.08\%	92.61\%	94.86\%	84.67\%	88.73\%	91.29\%	84.94\%	88.96\%	91.61\%
High ($\beta=0$)	Low ($\delta=0.05$)	98.71\%	99.83\%	99.84\%	97.15\%	98.99\%	99.58\%	97.44\%	99.10\%	99.58\%
	Fair ($\delta=0.10$)	93.30\%	96.49\%	98.27\%	89.73\%	93.59\%	95.88\%	90.24\%	94.02\%	96.23\%
	High ($\delta=0.15$)	88.81\%	92.53\%	95.04\%	84.15\%	88.29\%	90.99\%	84.46\%	88.64\%	91.36\%
		Fair Capacity Constraint (K=4)								
Absent ($\beta=0$)	Low ($\delta=0.05$)	98.14\%	99.69\%	99.98\%	96.53\%	98.82\%	99.76\%	96.73\%	98.82\%	99.73\%
) Fair ($\delta=0.10$)	93.21\%	96.35\%	98.06\%	90.08\%	93.73\%	95.95\%	90.41\%	93.93\%	96.22\%
	High ($\delta=0.15$)	89.69\%	93.22\%	95.31\%	85.98\%	88.69\%	92.10\%	86.66\%	89.81\%	92.26\%
Fair ($\beta=0$)	Low ($\delta=0.05$)	98.47\%	99.82\%	99.96\%	97.15\%	98.96\%	99.74\%	97.20\%	99.09\%	99.72\%
	Fair ($\delta=0.10$)	93.16\%	96.32\%	98.06\%	89.66\%	93.45\%	95.77\%	89.96\%	93.86\%	96.08\%
	High ($\delta=0.15$)	89.21\%	91.93\%	94.89\%	84.78\%	88.67\%	90.20\%	84.87\%	88.77\%	91.69\%
High ($\beta=0$)	Low ($\delta=0.05$)	98.71\%	99.83\%	99.81\%	97.15\%	99.01\%	99.62\%	97.28\%	99.10\%	99.59\%
	Fair ($\delta=0.10$)	93.31\%	96.49\%	98.19\%	89.72\%	93.38\%	95.78\%	90.17\%	93.89\%	96.46\%
	High ($\delta=0.15$)	88.96\%	92.60\%	94.78\%	84.19\%	88.53\%	92.04\%	84.37\%	89.30\%	93.12\%
		High Capacity Constraint (K=3)								
Absent ($\beta=0$)	Low ($\delta=0.05$)	98.19\%	99.68\%	99.96\%	96.53\%	98.82\%	99.76\%	96.73\%	98.95\%	99.77\%
) Fair ($\delta=0.10$)	93.33\%	96.34\%	98.05\%	89.78\%	93.67\%	96.07\%	90.36\%	94.24\%	96.76\%
	High ($\delta=0.15$)	83.67\%	92.62\%	94.80\%	86.06\%	90.48\%	93.72\%	86.77\%	91.34\%	94.88\%
Fair ($\beta=0$)	Low ($\delta=0.05$)	98.48\%	99.81\%	99.95\%	96.86\%	98.96\%	99.56\%	96.86\%	98.90\%	99.93\%
	Fair ($\delta=0.10$)	91.53\%	96.28\%	97.75\%	90.05\%	94.58\%	97.76\%	91.04\%	95.61\%	98.83\%
	High ($\delta=0.15$)	88.77\%	92.50\%	95.04\%	86.40\%	91.98\%	96.37\%	87.63\%	93.44\%	97.85\%
High ($\beta=0.2$)	Low ($\delta=0.05$)	98.71\%	99.83\%	99.81\%	96.98\%	99.23\%	99.89\%	97.28\%	99.46\%	99.84\%
	Fair ($\delta=0.10$)	92.73\%	96.14\%	98.14\%	91.77\%	97.03\%	98.82\%	93.05\%	97.73\%	99.12\%
	High ($\delta=0.15$)	88.79\%	93.28\%	96.37\%	88.48\%	95.09\%	97.95\%	90.20\%	91.20\%	98.43\%

Note that the shaded area in the upper left corner of the table corresponds to the analytical results in Section 5 , where all additional effects are absent.

